15 research outputs found

    Advances in studying phasic dopamine signaling in brain reward mechanisms

    Get PDF
    The last sixty years of research has provided extraordinary advances of our knowledge of the reward system. Since its discovery as a neurotransmitter by Carlsson and colleagues (1), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to measure DA in the brain. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new mechanistic insight of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior

    Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking

    Get PDF
    Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Cues evoke burst firing of ventral tegmental area (VTA) dopamine (DA) neurons and phasic DA release in the nucleus accumbens (NAc). Cholinergic and glutamatergic input to the VTA is suggested to gate phasic DA activity. However, the role of VTA cholinergic and glutamatergic receptors in regulating phasic dopamine release and cue-induced drug-seeking in cocaine experienced subjects is not known. In male Sprague-Dawley rats, we found that VTA inactivation strongly inhibited, while VTA stimulation promoted, cocaine-seeking behavior during early withdrawal. Blockade of phasic activated D1 receptors in the NAc core also strongly inhibited cue-induced cocaine-seeking--suggesting an important role of phasic DA activity in the VTA to NAc core circuit. Next, we examined the role of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) in regulating both NAc core phasic DA release and cue-induced cocaine-seeking. In cocaine naïve subjects, VTA infusion of the nicotinic acetylcholine receptor (AChR) antagonist mecamylamine, the muscarinic AChR antagonist scopolamine, or the NMDAR antagonist AP-5, led to robust attenuation of phasic DA release in the NAc core. During early cocaine withdrawal, VTA infusion of AP-5 had limited effects on NAc phasic DA release and cue-induced cocaine-seeking while VTA infusion of mecamylamine or scopolamine robustly inhibited both phasic DA release and cocaine-seeking. The results demonstrate that VTA AChRs, but not NMDARs, strongly regulate cue-induced cocaine-seeking and phasic DA release during early cocaine withdrawal

    Comparing opportunity to learn and student achievement gains in southern African primary schools: A new approach

    No full text
    Reeves, C; Carnoy, M; Addy, N. (2013). Comparing opportunity to learn and student achievement gains in southern African primary schools: a new approach. International Journal of Educational Development , 33, 5. 2013. p. 426-435, DOI:10.1016/j.ijedudev.2012.12.006A popular explanation for low student achievement in many developing countries’ primary schools is that students have relatively little opportunity to learn (OTL) the skills needed for academic success. However logical this explanation may be, surprisingly little empirical evidence has been presented to support it. In this paper we address this gap by estimating the effect of OTL on students’ academic performance using rich data we gathered on the teaching process in a large number of South African and Botswana Grade 6 classrooms. We use an innovative classroom fixed effects approach to estimate the impact of OTL on students’ mathematics achievement gains. We found statistically significant but very different results for our South Africa and Botswana samples. The discussion of those results in the context of differences in the two school systems gives us insights into the importance and limits of OTL as an explainer of student learning in low achievement schools

    Combined infusion and stimulation with fast-scan cyclic voltammetry (CIS-FSCV) to assess ventral tegmental area receptor regulation of phasic dopamine

    No full text
    Phasic dopamine (DA) release from the ventral tegmental area (VTA) to the nucleus accumbens plays a pivotal role in reward processing and reinforcement learning. Understanding how the diverse neuronal inputs into the VTA control phasic DA release can provide a better picture of the circuitry that controls reward processing and reinforcement learning. Here, we describe a method that combines intra-VTA cannula infusions of pharmacological agonists and antagonists with stimulation-evoked phasic DA release (combined infusion and stimulation, or CIS) as measured by in vivo fast-scan cyclic voltammetry (FSCV). Using CIS-FSCV in anesthetized rats, a phasic DA response can be evoked by electrically stimulating the VTA with a bipolar electrode fitted with a cannula while recording in the nucleus accumbens core. Pharmacological agonists or antagonists can be infused directly at the stimulation site to investigate specific VTA receptors\u27 roles in driving phasic DA release. A major benefit of CIS-FSCV is that VTA receptor function can be studied in vivo, building on in vitro studies

    Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core

    No full text
    Phasic dopamine (DA) signaling underlies reward learning. Cholinergic and glutamatergic inputs into the ventral tegmental area (VTA) are crucial for modulating burst firing activity and subsequent phasic DA release in the nucleus accumbens (NAc), but the specific VTA nicotinic receptor subtypes that regulate phasic DA release have not been identified. The goal was to determine the role of VTA N-methyl-d-aspartate receptors (NMDARs) and specific subtypes of nicotinic acetylcholine receptors (nAChRs) in regulating phasic DA release in the NAc core. Fast-scan cyclic voltammetry in anesthetized rats was combined with intra-VTA micro-infusion to evaluate the ability of glutamatergic and cholinergic drugs to modulate stimulated phasic DA release in the NAc core. VTA NMDAR blockade with AP-5 decreased, while VTA NMDAR activation with NMDA increased NAc peak phasic DA release. Intra-VTA administration of the nonspecific nAChR antagonist mecamylamine produced a persistent decrease in phasic DA release. Infusion of the α6-selective antagonist α-conotoxin MII (α-ctx MII) produced a robust, but transient decrease in phasic DA, whereas infusion of selective doses of either the α4β2-selective antagonist, dihydro-beta-erythroidine, or the α7 antagonist, methyllycaconitine, had no effect. Co-infusion of AP-5 and α-ctx MII produced a similar phasic DA decrease as either drug alone, with no additive effect. The results suggest that VTA α6β2 nAChRs, but not α4β2 or α7 nAChRs, regulate phasic DA release in the NAc core and that VTA α6β2 nAChRs and NMDA receptors act at a common site or target to regulate NAc phasic DA signaling

    Sensitization of Rapid Dopamine Signaling in the Nucleus Accumbens Core and Shell After Repeated Cocaine in Rats

    No full text
    Repeated cocaine exposure and withdrawal leads to long-term changes, including behavioral and dopamine sensitization to an acute cocaine challenge, that are most pronounced after long withdrawal periods. However, the changes in dopamine neurotransmission after short withdrawal periods are less well defined. To study dopamine neurotransmission after 1-day withdrawal, we used fast-scan cyclic voltammetry (FSCV) to determine whether repeated cocaine alters rapid dopamine release and uptake in the nucleus accumbens (NAc) core and shell. FSCV was performed in urethane anesthetized male Sprague-Dawley rats that had previously received one or seven daily injections of saline or cocaine (15 mg/kg, ip). In response to acute cocaine, subjects showed increased dopamine overflow that resulted from both increased dopamine release and slowed dopamine uptake. One-day cocaine pre-exposure, however, did not alter dopaminergic responses to a subsequent cocaine challenge. In contrast, 7-day cocaine-treated subjects showed a potentiated rapid dopamine response in both the core and shell after an acute cocaine challenge. In addition, kinetic analysis during the cocaine challenge showed a greater increase in apparent Km of 7-day cocaine exposed subjects. Together, the data provide the first in vivo demonstration of rapid dopamine sensitization in the NAc core and shell after a short withdrawal period. In addition, the data clearly delineate cocaine's release and uptake effects and suggest that the observed sensitization results from greater uptake inhibition in cocaine pre-exposed subjects

    Vitamin D3 : a role in dopamine circuit regulation, diet-induced obesity, and drug consumption

    No full text
    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully ctivevitaminD3(calcitriol,10 g/kg,i.p.)were performed. Non deficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol
    corecore